A Retrospective Analysis of the COVID-19 Pandemic Evolution in Italy

Author:

Fochesato AnnaORCID,Simoni Giulia,Reali FedericoORCID,Giordano GiuliaORCID,Domenici EnricoORCID,Marchetti LucaORCID

Abstract

Late 2019 saw the outbreak of COVID-19, a respiratory disease caused by the new coronavirus SARS-CoV-2, which rapidly turned into a pandemic, killing more than 2.77 million people and infecting more than 126 million as of late March 2021. Daily collected data on infection cases and hospitalizations informed decision makers on the ongoing pandemic emergency, enabling the design of diversified countermeasures, from behavioral policies to full lockdowns, to curb the virus spread. In this context, mechanistic models could represent valuable tools to optimize the timing and stringency of interventions, and to reveal non-trivial properties of the pandemic dynamics that could improve the design of suitable guidelines for future epidemics. We performed a retrospective analysis of the Italian epidemic evolution up to mid-December 2020 to gain insight into the main characteristics of the original strain of SARS-CoV-2, prior to the emergence of new mutations and the vaccination campaign. We defined a time-varying optimization procedure to calibrate a refined version of the SIDARTHE (Susceptible, Infected, Diagnosed, Ailing, Recognized, Threatened, Healed, Extinct) model and hence accurately reconstruct the epidemic trajectory. We then derived additional features of the COVID-19 pandemic in Italy not directly retrievable from reported data, such as the estimate of the day zero of infection in late November 2019 and the estimate of the spread of undetected infection. The present analysis contributes to a better understanding of the past pandemic waves, confirming the importance of epidemiological modeling to support an informed policy design against epidemics to come.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3