BreastNet18: A High Accuracy Fine-Tuned VGG16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancer from Enhanced Mammography Images

Author:

Montaha Sidratul,Azam SamiORCID,Rafid Abul Kalam Muhammad Rakibul HaqueORCID,Ghosh Pronab,Hasan Md. ZahidORCID,Jonkman Mirjam,De Boer Friso

Abstract

Background: Identification and treatment of breast cancer at an early stage can reduce mortality. Currently, mammography is the most widely used effective imaging technique in breast cancer detection. However, an erroneous mammogram based interpretation may result in false diagnosis rate, as distinguishing cancerous masses from adjacent tissue is often complex and error-prone. Methods: Six pre-trained and fine-tuned deep CNN architectures: VGG16, VGG19, MobileNetV2, ResNet50, DenseNet201, and InceptionV3 are evaluated to determine which model yields the best performance. We propose a BreastNet18 model using VGG16 as foundational base, since VGG16 performs with the highest accuracy. An ablation study is performed on BreastNet18, to evaluate its robustness and achieve the highest possible accuracy. Various image processing techniques with suitable parameter values are employed to remove artefacts and increase the image quality. A total dataset of 1442 preprocessed mammograms was augmented using seven augmentation techniques, resulting in a dataset of 11,536 images. To investigate possible overfitting issues, a k-fold cross validation is carried out. The model was then tested on noisy mammograms to evaluate its robustness. Results were compared with previous studies. Results: Proposed BreastNet18 model performed best with a training accuracy of 96.72%, a validating accuracy of 97.91%, and a test accuracy of 98.02%. In contrast to this, VGGNet19 yielded test accuracy of 96.24%, MobileNetV2 77.84%, ResNet50 79.98%, DenseNet201 86.92%, and InceptionV3 76.87%. Conclusions: Our proposed approach based on image processing, transfer learning, fine-tuning, and ablation study has demonstrated a high correct breast cancer classification while dealing with a limited number of complex medical images.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3