Breast cancer detection using deep convolutional neural networks and support vector machines
Author:
Affiliation:
1. Electronics and Communications Engineering Department, Arab Academy for Science, Technology, and Maritime Transport (AASTMT), Alexandria, Egypt
2. Electronic & Electrical Engineering Department, University of Strathclyde, Glasgow, United Kingdom
Abstract
Publisher
PeerJ
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Link
https://peerj.com/articles/6201.pdf
Reference42 articles.
1. Breast cancer detection using support vector machine technique applied on extracted electromagnetic waves;Al-Sharkawy;Applied Computational Electromagnetics Society Journal,2012
2. Classification of breast MRI lesions using a backpropagation neural network (BNN);Arbach,2004
3. A survey of image processing algorithms in digital mammography;Bozek,2009
4. Opportunities and obstacles for deep learning in biology and medicine;Ching,2017
5. Detection of microcalcifications in digital mammograms images using wavelet transform;Cristina Juarez,2006
Cited by 310 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Harnessing the power of radiomics and deep learning for improved breast cancer diagnosis with multiparametric breast mammography;Expert Systems with Applications;2024-09
2. CNN‐based deep learning approach for classification of invasive ductal and metastasis types of breast carcinoma;Cancer Medicine;2024-08
3. Mammo-Light: A lightweight convolutional neural network for diagnosing breast cancer from mammography images;Biomedical Signal Processing and Control;2024-08
4. Cross vision transformer with enhanced Growth Optimizer for breast cancer detection in IoMT environment;Computational Biology and Chemistry;2024-08
5. Bibliometric analysis of the application of deep learning in cancer from 2015 to 2023;Cancer Imaging;2024-07-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3