Opportunities and obstacles for deep learning in biology and medicine

Author:

Ching TraversORCID,Himmelstein Daniel S.ORCID,Beaulieu-Jones Brett K.ORCID,Kalinin Alexandr A.ORCID,Do Brian T.ORCID,Way Gregory P.ORCID,Ferrero EnricoORCID,Agapow Paul-MichaelORCID,Zietz MichaelORCID,Hoffman Michael M.ORCID,Xie WeiORCID,Rosen Gail L.ORCID,Lengerich Benjamin J.ORCID,Israeli JohnnyORCID,Lanchantin JackORCID,Woloszynek StephenORCID,Carpenter Anne E.ORCID,Shrikumar AvantiORCID,Xu JinboORCID,Cofer Evan M.ORCID,Lavender Christopher A.ORCID,Turaga Srinivas C.ORCID,Alexandari Amr M.ORCID,Lu ZhiyongORCID,Harris David J.ORCID,DeCaprio DaveORCID,Qi YanjunORCID,Kundaje AnshulORCID,Peng YifanORCID,Wiley Laura K.ORCID,Segler Marwin H.S.ORCID,Boca Simina M.ORCID,Swamidass S. JoshuaORCID,Huang AustinORCID,Gitter AnthonyORCID,Greene Casey S.ORCID

Abstract

AbstractDeep learning, which describes a class of machine learning algorithms, has recently showed impressive results across a variety of domains. Biology and medicine are data rich, but the data are complex and often ill-understood. Problems of this nature may be particularly well-suited to deep learning techniques. We examine applications of deep learning to a variety of biomedical problems—patient classification, fundamental biological processes, and treatment of patients—and discuss whether deep learning will transform these tasks or if the biomedical sphere poses unique challenges. We find that deep learning has yet to revolutionize or definitively resolve any of these problems, but promising advances have been made on the prior state of the art. Even when improvement over a previous baseline has been modest, we have seen signs that deep learning methods may speed or aid human investigation. More work is needed to address concerns related to interpretability and how to best model each problem. Furthermore, the limited amount of labeled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning powering changes at both bench and bedside with the potential to transform several areas of biology and medicine.

Publisher

Cold Spring Harbor Laboratory

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3