Efficient Guided Grad-CAM Tuned Patch Neural Network for Accurate Anomaly Detection in Full Images

Author:

Rajkumar R.,Shanthi D.,Manivannan K.

Abstract

Deep learning-based anomaly detection in images has recently gained popularity as an investigative field with many global submissions. To simplify complex data analysis, researchers in the deep learning subfield of machine learning employ Artificial Neural Networks (ANNs) with many hidden layers. Finding data occurrences that significantly differ from generalizable to most data sets is the primary goal of anomaly detection. Many medical imaging applications use convolutional neural networks (CNNs) to examine anomalies automatically. While CNN structures are reliable feature extractors, they encounter challenges when simultaneously classifying and segmenting spots that need removal from scans. We suggest a separate and integration system to solve these issues, separated into two distinct departments: classification and segmentation. Initially, many network architecturesare taught independently for each abnormality, and these networks’ main components are combined. A sharedcomponent of the branched structure functions for all abnormalities. The final structure has two branches: onehas distinct sub-networks, each intended to classify a particular abnormality, and the other for segmenting various abnormalities. Deep CNNs training directly on high-resolution images necessitate input layer image compression, which results in the loss of information necessary for detecting medical abnormalities. A guided GradCAM (GCAM) tuned patch neural network is applied to full-size images for anomaly localization. Therefore, the suggested approach merges the pre-trained deep CNNs with class activation mappings and area suggestion systems to construct abnormality sensors and then fine-tunes the CNNs on picture patches, focusing on medical abnormalities instead of training on whole images. A mammogram data set was used to test the deep patch classifier, which had a 99% overall classification accuracy. A Brain tumor image data set was used to test the integrateddetector’s ability to detect abnormalities, and it did so with an average precision of 0.99.

Publisher

Kaunas University of Technology (KTU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3