A Residual Deep Learning Method for Accurate and Efficient Recognition of Gym Exercise Activities Using Electromyography and IMU Sensors

Author:

Mekruksavanich Sakorn1ORCID,Jitpattanakul Anuchit23ORCID

Affiliation:

1. Department of Computer Engineering, School of Information and Communication Technology, University of Phayao, Phayao 56000, Thailand

2. Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

3. Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Abstract

The accurate and efficient recognition of gym workout activities using wearable sensors holds significant implications for assessing fitness levels, tailoring personalized training regimens, and overseeing rehabilitation progress. This study introduces CNN-ResBiGRU, a novel deep learning architecture that amalgamates residual and hybrid methodologies, aiming to precisely categorize gym exercises based on multimodal sensor data. The primary goal of this model is to effectively identify various gym workouts by integrating convolutional neural networks, residual connections, and bidirectional gated recurrent units. Raw electromyography and inertial measurement unit data collected from wearable sensors worn by individuals during strength training and gym sessions serve as inputs for the CNN-ResBiGRU model. Initially, convolutional neural network layers are employed to extract unique features in both temporal and spatial dimensions, capturing localized patterns within the sensor outputs. Subsequently, the extracted features are fed into the ResBiGRU component, leveraging residual connections and bidirectional processing to capture the exercise activities’ long-term temporal dependencies and contextual information. The performance of the proposed model is evaluated using the Myogym dataset, comprising data from 10 participants engaged in 30 distinct gym activities. The model achieves a classification accuracy of 97.29% and an F1-score of 92.68%. Ablation studies confirm the effectiveness of the convolutional neural network and ResBiGRU components. The proposed hybrid model uses wearable multimodal sensor data to accurately and efficiently recognize gym exercise activity.

Funder

University of Phayao

Thailand Science Research and Innovation Fund

National Science, Research and Innovation Fund

King Mongkut’s University of Technology North Bangkok

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3