Modeling the Impact and Risk Assessment of Urbanization on Urban Heat Island and Thermal Comfort Level of Beijing City, China (2005–2020)

Author:

Amir Siddique Muhammad12ORCID,Boqing Fan13,Dongyun Liu1

Affiliation:

1. School of Landscape Architecture, Beijing Forestry University, Beijing 100107, China

2. School of Architecture, Tianjin University, Tianjin 300272, China

3. School of Architecture, Southeast University, Nanjing 210018, China

Abstract

Rapid urbanization poses a threat to various ecosystem services. Beijing has undergone extensive infrastructure development in recent years. The study aims to extract land surface temperature (LST) and land use cover (LUC) data from satellite imagery, identify urban heat island (UHI) areas in Beijing, and determine the correlation between LST, LUC, NDVI, and BUI. It will also investigate the relationship between UHI and built/unbuilt areas, evaluate thermal comfort in Beijing using UTFVI, and assess the ecological quality of different land use types using the Ecological Evaluation Index (EEI). The results can inform urban planning and management in rapidly urbanizing and climate-changing regions. Changes in LUC and other activities affect the distribution of LST. For the study years (2005–2020), the estimated mean LST in Beijing was 24.72 °C, 27.07 °C, 26.22 °C, and 27.03 °C, respectively. A significant positive correlation (r = 0.96 p > 0.005) was found between LST and urban areas with other infrastructures. Geographically weighted regression (GWR) outperformed with Adj R2 > 0.74, suggesting that the extent of an urban heat island (UHI) is strongly dependent on the settlements, LUC composition, size, and terrain of surrounding communities. Urban hotspots in the city were identified and validated using Google Earth imagery. The Ecological Evaluation Index (EEI) value was relatively low compared to other ecosystem-related units. EEI showed a continuous increase of six percent in the most negative categories, indicating an unstable environment. This study concludes that urbanization affects the city’s environment, and study findings would help to regulate the urban ecosystem in Beijing.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3