Spatiotemporal Impact of Urbanization on Urban Heat Island and Urban Thermal Field Variance Index of Tianjin City, China

Author:

Ullah NadeemORCID,Siddique Muhammad AmirORCID,Ding MengyueORCID,Grigoryan Sara,Zhang Tianlin,Hu Yike

Abstract

The rapid infrastructure development in densely populated areas has had several negative impacts. Increases in urbanization have led to increased LST, and urban ecological systems have been negatively affected. Urban heat islands (UHIs) can be mitigated by understanding how current and future LST phenomena are linked to changes in landscape composition and land use cover (LUC). This study investigated the multi-scale spatial analysis of LUC and LST in Tianjin using remote sensing and GIS data. We used Landsat data from 2005 to 2020 to examine the effects of LUC on LST in urban agglomeration. According to the Urban Thermal Field Variance Index (UTFVI), the city’s ecological evaluation was carried out. Results show that changes in LUC and other anthropogenic activities affect the spatial distribution of LST. For the study years (2004–2009), the estimated mean LST in Tianjin was 25.32 °C, 26.73 °C, 27.62 °C, and 27.93 °C. Between LST and urban areas with other infrastructures, and NDBI, significant positive correlation values were found about 0.53, 0.48, and 0.76 (p < 0.05), respectively. Temperatures would almost certainly increase by 3.87 °C to 7.26 °C as a result of decreased plant cover and increased settlements. These findings strongly imply a correlation between LST and the vegetation index. Between 2005 and 2020, the anticipated increase in LST of 3.39 °C is expected to harm urban environmental health. This study demonstrates how Tianjin and other cities can achieve ecological sustainability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3