Assessing the Impact of Spatiotemporal Land Cover Changes on the Urban Heat Islands in Developing Cities with Landsat Data: A Case Study in Zhanjiang

Author:

Hu Yutian1,Li Hongye1ORCID,Amir Siddique Muhammad2,Liu Dongyun1

Affiliation:

1. School of Landscape Architecture, Beijing Forestry University, Beijing 100107, China

2. School of Architecture, Tianjin University, Tianjin 300272, China

Abstract

Land cover changes (LCCs) due to urbanization cause urban heat islands (UHIs), significantly affecting land surface temperature (LST) through spatiotemporal changes in compositions, parameters, and patterns. Land cover and LST have been studied in various cities; however, indicative research into heterogeneous LCC’s impact on LST in less-developed cities remains incomplete. This study analyzed new Landsat images of Zhanjiang, taken from 2004 to 2022, to determine the impact of three LCC indicators (compositions, parameters, and patterns) on LSTs. The urban thermal field variance index (UTFVI) was used to describe the distribution and variation in LST. We also quantified the cooling or warming benefits of various LCCs. The results indicate that the average temperature in the land urban heat island (SUHI) area rose to 30.6 °C. The average temperature of the SUHI was 3.32 °C higher than that of the non-SUHI area, showing the characteristic of shifting to counties and multi-core development. The LST increases by 0.37–0.67 °C with an increase of 0.1 in the normalized difference building index (NDBI), which is greater than the cooling benefit of the normalized difference of vegetation index (NDVI). The impact of landscape pattern indices on impervious surfaces and water is higher than that on vegetation and cropland, with a rising influence on impervious surfaces and a decreasing impact on water. The predominant cooling patches are vegetation and water, while large areas of impervious surface and cropland aggravate UHIs for industrial and agricultural activities. These findings are intended to guide future urban layouts and planning in less-developed cities, with thermal climate mitigation as a guiding principle.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3