Exploring the Relationship between Urbanization and the Eco-Environment: A Case Study of Beijing

Author:

Huang Yi,Qiu Qianqian,Sheng Yehua,Min Xiangqiang,Cao Yuwei

Abstract

Beijing is one of the most developed cities in China and has experienced a series of environmental problems. In accordance with the Major Function Zone planning, Beijing is divided into four zones in an attempt to coordinate development between urban areas and the eco-environment. Classic coupling model uses statistical data to evaluate the interactions of these two subsystems; however, it lacks the capability to express dynamic changes to land cover. Thus, we extracted land cover data from Landsat images and examined the urbanization and eco-environment level as well as the coupling coordination in Beijing and its functional zones. The main conclusions are as follows. (1) Between 2001 and 2011, both urbanization and the eco-environment level in Beijing and its functional zones grew steadily. Different zones coordinated together according to their own characteristics, and the overall coupling coordination of the city transformed from the “basically balanced” to the “superiorly balanced” stage of development. (2) After 2011, the condition of the eco-environment worsened in Beijing and in most of the function zones, while the coordination between increased urbanization and the worsened eco-environment may be a result of environmental lag. This study integrated land cover data into the coupling mode and fully utilized the advantages of spatiotemporal analysis and the coupling model. In other words, the spatiotemporal analysis explains the land cover changes visually over the research period, while the coupling model explores the interaction mechanisms between urbanization and the eco-environment. The land cover data enriches the coupling theory and provides a reference for evaluating the effectiveness of local development policy.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3