Cooperative Decision-Making for Mixed Traffic at an Unsignalized Intersection Based on Multi-Agent Reinforcement Learning

Author:

Zhuang Huanbiao1,Lei Chaofan1,Chen Yuanhang1,Tan Xiaojun1

Affiliation:

1. School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen 518107, China

Abstract

Despite rapid advances in vehicle intelligence and connectivity, there is still a significant period in mixed traffic where connected, automated vehicles and human-driven vehicles coexist. The behavioral uncertainty of human-driven vehicles makes decision-making a challenging task in an unsignalized intersection scenario. In this paper, a decentralized multi-agent proximal policy optimization (MAPPO) based on an attention representations algorithm (Attn-MAPPO) was developed to make joint decisions at an intersection to avoid collisions and cross the intersection effectively. To implement this framework, by exploiting the shared information, the system was modeled as a model-free, fully cooperative, multi-agent system. The vehicle employed an attention module to extract the most valuable information from its neighbors. Based on the observation and traffic rules, a joint policy was identified to work more cooperatively based on the trajectory prediction of all the vehicles. To facilitate the collaboration between the vehicles, a weighted reward assignment scheme was proposed to focus more on the vehicles approaching intersections. The results presented the advantages of the Attn-MAPPO framework and validated the effectiveness of the designed reward function. Ultimately, the comparative experiments were conducted to demonstrate that the proposed approach was more adaptive and generalized than the heuristic rule-based model, which revealed its great potential for reinforcement learning in the decision-making of autonomous driving.

Funder

Key-Area Research and Development Program of Guangdong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3