VN-MADDPG: A Variable-Noise-Based Multi-Agent Reinforcement Learning Algorithm for Autonomous Vehicles at Unsignalized Intersections

Author:

Zhang Hao1ORCID,Du Yu1,Zhao Shixin1,Yuan Ying1,Gao Qiuqi1

Affiliation:

1. Beijing Key Laboratory of Information Service Engineering, College of Robotics, Beijing Union University, Beijing 100101, China

Abstract

The decision-making performance of autonomous vehicles tends to be unstable at unsignalized intersections, making it difficult for them to make optimal decisions. We propose a decision-making model based on the Variable-Noise Multi-Agent Deep Deterministic Policy Gradient (VN-MADDPG) algorithm to address these issues. The variable-noise mechanism reduces noise dynamically, enabling the agent to utilize the learned policy more effectively to complete tasks. This significantly improves the stability of the decision-making model in making optimal decisions. The importance sampling module addresses the inconsistency between outdated experience in the replay buffer and current environmental features. This enhances the model’s learning efficiency and improves the robustness of the decision-making model. Experimental results on the CARLA simulation platform show that the success rate of decision making at unsignalized intersections by autonomous vehicles has significantly increased, and the pass time has been reduced. The decision-making model based on the VN-MADDPG algorithm demonstrates stable and excellent decision-making performance.

Funder

Vehicle–Road Cooperative Autonomous Driving Fusion Control Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3