Markov Transition Field Combined with Convolutional Neural Network Improved the Predictive Performance of Near-Infrared Spectroscopy Models for Determination of Aflatoxin B1 in Maize

Author:

Wang Bo,Deng Jihong,Jiang HuiORCID

Abstract

This work provides a novel approach to monitor the aflatoxin B1 (AFB1) content in maize by near-infrared (NIR) spectra-based deep learning models that integrates Markov transition field (MTF) image coding and a convolutional neural network (CNN) strategy. According to the data structure characteristics of near-infrared spectra, new structures of one-dimensional CNN (1D-CNN) and two-dimensional MTF-CNN (2D-MTF-CNN) were designed to construct a deep learning model for the monitoring of AFB1 in maize. The results obtained showed that compared with the 1D-CNN model, the performance of the 2D-MTF-CNN model had been significantly improved, and its root mean square error of prediction, coefficient of predictive determination, and relative percent deviation were 1.3591 μg·kg−1, 0.9955, and 14.9386, respectively. The results indicate that the MTF is an effective data encoding technique for converting one-dimensional spectra into two-dimensional images. It more intuitively reflects the intrinsic characteristics of the NIR spectra from a new perspective and provides richer spectral information for the construction of deep learning models, which can ensure the detection accuracy and generalization performance of deep learning quantitative detection models. This study provides a new analytical perspective for the chemometrics analysis of the NIR spectroscopy.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3