A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality

Author:

Kontogiannis Dimitrios,Bargiotas Dimitrios,Daskalopulu AspassiaORCID,Tsoukalas Lefteri H.

Abstract

Power forecasting models offer valuable insights on the electricity consumption patterns of clients, enabling the development of advanced strategies and applications aimed at energy saving, increased energy efficiency, and smart energy pricing. The data collection process for client consumption models is not always ideal and the resulting datasets often lead to compromises in the implementation of forecasting models, as well as suboptimal performance, due to several challenges. Therefore, combinations of elements that highlight relationships between clients need to be investigated in order to achieve more accurate consumption predictions. In this study, we exploited the combined effects of client similarity and causality, and developed a power consumption forecasting model that utilizes ensembles of long short-term memory (LSTM) networks. Our novel approach enables the derivation of different representations of the predicted consumption based on feature sets influenced by similarity and causality metrics. The resulting representations were used to train a meta-model, based on a multi-layer perceptron (MLP), in order to combine the results of the LSTM ensembles optimally. This combinatorial approach achieved better overall performance and yielded lower mean absolute percentage error when compared to the standalone LSTM ensembles that do not include similarity and causality. Additional experiments indicated that the combination of similarity and causality resulted in more performant models when compared to implementations utilizing only one element on the same model structure.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3