Clustering Informed MLP Models for Fast and Accurate Short-Term Load Forecasting

Author:

Arvanitidis Athanasios IoannisORCID,Bargiotas DimitriosORCID,Daskalopulu AspassiaORCID,Kontogiannis DimitriosORCID,Panapakidis Ioannis P.ORCID,Tsoukalas Lefteri H.ORCID

Abstract

The stable and efficient operation of power systems requires them to be optimized, which, given the growing availability of load data, relies on load forecasting methods. Fast and highly accurate Short-Term Load Forecasting (STLF) is critical for the daily operation of power plants, and state-of-the-art approaches for it involve hybrid models that deploy regressive deep learning algorithms, such as neural networks, in conjunction with clustering techniques for the pre-processing of load data before they are fed to the neural network. This paper develops and evaluates four robust STLF models based on Multi-Layer Perceptrons (MLPs) coupled with the K-Means and Fuzzy C-Means clustering algorithms. The first set of two models cluster the data before feeding it to the MLPs, and are directly comparable to similar existing approaches, yielding, however, better forecasting accuracy. They also serve as a common reference point for the evaluation of the second set of two models, which further enhance the input to the MLP by informing it explicitly with clustering information, which is a novel feature. All four models are designed, tested and evaluated using data from the Greek power system, although their development is generic and they could, in principle, be applied to any power system. The results obtained by the four models are compared to those of other STLF methods, using objective metrics, and the accuracy obtained, as well as convergence time, is in most cases improved.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3