Abstract
The stable and efficient operation of power systems requires them to be optimized, which, given the growing availability of load data, relies on load forecasting methods. Fast and highly accurate Short-Term Load Forecasting (STLF) is critical for the daily operation of power plants, and state-of-the-art approaches for it involve hybrid models that deploy regressive deep learning algorithms, such as neural networks, in conjunction with clustering techniques for the pre-processing of load data before they are fed to the neural network. This paper develops and evaluates four robust STLF models based on Multi-Layer Perceptrons (MLPs) coupled with the K-Means and Fuzzy C-Means clustering algorithms. The first set of two models cluster the data before feeding it to the MLPs, and are directly comparable to similar existing approaches, yielding, however, better forecasting accuracy. They also serve as a common reference point for the evaluation of the second set of two models, which further enhance the input to the MLP by informing it explicitly with clustering information, which is a novel feature. All four models are designed, tested and evaluated using data from the Greek power system, although their development is generic and they could, in principle, be applied to any power system. The results obtained by the four models are compared to those of other STLF methods, using objective metrics, and the accuracy obtained, as well as convergence time, is in most cases improved.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献