A Clustering and PL/SQL-Based Method for Assessing MLP-Kmeans Modeling

Author:

Silva-Blancas Victor Hugo1ORCID,Jiménez-Hernández Hugo1ORCID,Herrera-Navarro Ana Marcela1ORCID,Álvarez-Alvarado José M.2ORCID,Córdova-Esparza Diana Margarita1ORCID,Rodríguez-Reséndiz Juvenal2ORCID

Affiliation:

1. Facultad de Informática, Universidad Autónoma de Querétaro, Santiago de Querétaro 76230, Mexico

2. Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico

Abstract

With new high-performance server technology in data centers and bunkers, optimizing search engines to process time and resource consumption efficiently is necessary. The database query system, upheld by the standard SQL language, has maintained the same functional design since the advent of PL/SQL. This situation is caused by recent research focused on computer resource management, encryption, and security rather than improving data mining based on AI tools, machine learning (ML), and artificial neural networks (ANNs). This work presents a projected methodology integrating a multilayer perceptron (MLP) with Kmeans. This methodology is compared with traditional PL/SQL tools and aims to improve the database response time while outlining future advantages for ML and Kmeans in data processing. We propose a new corollary: hk→H=SSE(C),wherek>0and∃X, executed on application software querying data collections with more than 306 thousand records. This study produced a comparative table between PL/SQL and MLP-Kmeans based on three hypotheses: line query, group query, and total query. The results show that line query increased to 9 ms, group query increased from 88 to 2460 ms, and total query from 13 to 279 ms. Testing one methodology against the other not only shows the incremental fatigue and time consumption that training brings to database query but also that the complexity of the use of a neural network is capable of producing more precision results than the simple use of PL/SQL instructions, and this will be more important in the future for domain-specific problems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3