Structural Ensemble Regression for Cluster-Based Aggregate Electricity Demand Forecasting

Author:

Kontogiannis DimitriosORCID,Bargiotas DimitriosORCID,Daskalopulu AspassiaORCID,Arvanitidis Athanasios IoannisORCID,Tsoukalas Lefteri H.

Abstract

Accurate electricity demand forecasting is vital to the development and evolution of smart grids as well as the reinforcement of demand side management strategies in the energy sector. Since this forecasting task requires the efficient processing of load profiles extracted from smart meters for large sets of clients, the challenges of high dimensionality often lead to the adoption of cluster-based aggregation strategies, resulting in scalable estimation models that operate on aggregate times series formed by client groups that share similar load characteristics. However, it is evident that the clustered time series exhibit different patterns that may not be processed efficiently by a single estimator or a fixed hybrid structure. Therefore, ensemble learning methods could provide an additional layer of model fusion, enabling the resulting estimator to adapt to the input series and yield better performance. In this work, we propose an adaptive ensemble member selection approach for stacking and voting regressors in the cluster-based aggregate forecasting framework that focuses on the examination of forecasting performance on peak and non-peak observations for the development of structurally flexible estimators for each cluster. The resulting ensemble models yield better overall performance when compared to the standalone estimators and our experiments indicate that member selection strategies focusing on the influence of non-peak performance lead to more performant ensemble models in this framework.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3