Enhanced Machine-Learning Techniques for Medium-Term and Short-Term Electric-Load Forecasting in Smart Grids

Author:

Khan Sajawal ur RehmanORCID,Hayder Israa AdilORCID,Habib Muhammad AsifORCID,Ahmad MudassarORCID,Mohsin Syed MuhammadORCID,Khan Farrukh AslamORCID,Mustafa KainatORCID

Abstract

Nowadays, electric load forecasting through a data analytic approach has become one of the most active and emerging research areas. It provides future consumption patterns of electric load. Since there are large fluctuations in both electricity production and use, it is a difficult task to achieve a balance between electric load and demand. By analyzing past electric consumption records to estimate the upcoming electricity load, the issue of fluctuating behavior can be resolved. In this study, a framework for feature selection, extraction, and regression is put forward to carry out the electric load prediction. The feature selection phase uses a combination of extreme gradient boosting (XGB) and random forest (RF) to determine the significance of each feature. Redundant features in the feature extraction approach are removed by applying recursive feature elimination (RFE). We propose an enhanced support vector machine (ESVM) and an enhanced convolutional neural network (ECNN) for the regression component. Hyperparameters of both the proposed approaches are set using the random search (RS) technique. To illustrate the effectiveness of our proposed strategies, a comparison is also performed between the state-of-the-art approaches and our proposed techniques. In addition, we perform statistical analyses to prove the significance of our proposed approaches. Simulation findings illustrate that our proposed approaches ECNN and ESVM achieve higher accuracies of 98.83% and 98.7%, respectively.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3