Combinatorial Component Day-Ahead Load Forecasting through Unanchored Time Series Chain Evaluation

Author:

Kontogiannis Dimitrios1ORCID,Bargiotas Dimitrios1ORCID,Fevgas Athanasios1ORCID,Daskalopulu Aspassia1ORCID,Tsoukalas Lefteri H.2

Affiliation:

1. Department of Electrical and Computer Engineering, School of Engineering, University of Thessaly, 38334 Volos, Greece

2. Center for Intelligent Energy Systems (CiENS), School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906, USA

Abstract

Accurate and interpretable short-term load forecasting tasks are essential to the optimal operation of liberalized electricity markets since they contribute to the efficient development of energy trading and demand response strategies as well as the successful integration of renewable energy sources. Consequently, performant day-ahead consumption forecasting models need to capture feature nonlinearities, analyze system dynamics and conserve evolving temporal patterns in order to minimize the impact of noise and adapt to concept drift. Prominent estimators and standalone decomposition-based approaches may not fully address those challenges as they often yield small error rate improvements and omit optimal time series evolution. Therefore, in this work we propose a combinatorial component decomposition method focused on the selection of important renewable generation component sequences extracted from the combined output of seasonal-trend decomposition using locally estimated scatterplot smoothing, singular spectrum analysis and empirical mode decomposition methods. The proposed method was applied on five well-known kernel models in order to evaluate day-ahead consumption forecasts on linear, tree-based and neural network structures. Moreover, for the assessment of pattern conservation, an intuitive metric function, labeled as Weighted Average Unanchored Chain Divergence (WAUCD), based on distance scores and unanchored time series chains is introduced. The results indicated that the application of the combinatorial component method improved the accuracy and the pattern conservation capabilities of most models substantially. In this examination, the long short-term memory (LSTM) and deep neural network (DNN) kernels reduced their mean absolute percentage error by 46.87% and 42.76% respectively and predicted sequences that consistently evolved over 30% closer to the original target in terms of daily and weekly patterns.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3