Development of the Method for Nusinersen and Its Metabolites Identification in the Serum Samples of Children Treated with Spinraza for Spinal Muscular Atrophy

Author:

Studzińska SylwiaORCID,Mazurkiewicz-Bełdzińska MariaORCID,Buszewski Bogusław

Abstract

The application of oligonucleotides as drugs for different genetic diseases is increasing rapidly. Since 2016 they are used during spinal muscular atrophy treatment with the use of nusinersen oligonucleotide. The purpose of this study was to improve methods for the analysis of serum samples of patients treated with nusinersen. The results showed that liquid-liquid extraction (with phenol/chloroform) is insufficient and an additional purification step using solid-phase extraction is necessary. The best results were obtained for microextraction by packed sorbents. Important parameters in the optimization of the method were mainly the type of amine in the mobile phase and the stationary phase. Both influenced the selectivity of metabolite separation and thus their correct identification; while amine type impacted also the intensity of signals. Finally, the highest resolution of separation and the highest peak areas were obtained for N,N-dimethylbutylamine or N,N-diisopropylthylamine with an octadecyl column with a terminal aryl group. Over a dozen of metabolites were successfully identified with the use of methods developed during the study. The 3′ exonucleases and 5′ exonucleases were mainly responsible for nusinersen metabolism, consequently, 3′end shortmers, and 5′end shortmers were observed, as well as metabolites with simultaneous loss of bases at both ends of the sequence. However, some depurination and depyrimidination products were also identified. To the best of our knowledge, this is the first report on nusinersen and its metabolite identification in serum samples by liquid chromatography and mass spectrometry.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference30 articles.

1. Antisense technology: A review;Crooke;J. Biol. Chem.,2021

2. Spinraza® and Zolgensma® for Spinal Muscular Atrophy: Effectiveness and Value. Final Evidence Report https://icerreview.org/wp-content/uploads/2018/07/ICER_SMA_Final_Evidence_Report_040319.pdf

3. SPINRAZA. Highlights of Prescribing Information;US Food and Drug Administration (FDA)

4. Nusinersen: First Global Approval

5. Making sense of antisense oligonucleotides: A narrative review;Goyal;Muscle Nerve,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3