Feature Transfer and Rapid Adaptation for Few-Shot Solar Power Forecasting

Author:

Ren Xin1,Wang Yimei1,Cao Zhi2,Chen Fuhao3,Li Yujia3,Yan Jie3

Affiliation:

1. China Huaneng Clean Energy Research Institute, Beijing 102209, China

2. China Huaneng Group Co., Ltd., Beijing 100031, China

3. School of New Energy, North China Electric Power University, Beijing 102206, China

Abstract

A common dilemma with deep-learning-based solar power forecasting models is their heavy dependence on a large amount of training data. Few-Shot Solar Power Forecasting (FSSPF) has been investigated in this paper, which aims to obtain accurate forecasting models with limited training data. Integrating Transfer Learning and Meta-Learning, approaches of Feature Transfer and Rapid Adaptation (FTRA), have been proposed for FSSPF. Specifically, the adopted model will be divided into Transferable learner and Adaptive learner. Using massive training data from source solar plants, Transferable learner and Adaptive learner will be pre-trained through a Transfer Learning and Meta-Learning algorithm, respectively. Ultimately, the parameters of the Adaptive learner will undergo fine-tuning using the limited training data obtained directly from the target solar plant. Three open solar power forecasting datasets (GEFCom2014) were utilized to conduct 24-h-ahead FSSPF experiments. The results illustrate that the proposed FTRA is able to outperform other FSSPF approaches, under various amounts of training data as well as different deep-learning models. Notably, with only 10-day training data, the proposed FTRA can achieve an RMSR of 8.42%, which will be lower than the 0.5% achieved by the state-of-the-art approaches.

Funder

Key technology research and system development for the construction of group-level intelligent operation and maintenance platform, China Huaneng Group Technology Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3