AI-Driven precision in solar forecasting: Breakthroughs in machine learning and deep learning

Author:

Nadeem Ayesha1,Hanif Muhammad Farhan23,Naveed Muhammad Sabir2,Hassan Muhammad Tahir3,Gul Mustabshirha3,Husnain Naveed3,Mi Jianchun2

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, Pak-Austria Fachhochschule-Institute of Applied Sciences and Technology, Mang, Haripur 22621, Khyber Pakhtunkhwa, Pakistan

2. Department of Energy & Resource Engineering, College of Engineering, Peking University, Beijing 100871, China

3. Department of Mechanical Engineering, FE&T, Bahauddin Zakariya University, Multan 60000, Pakistan

Abstract

<p>The need for accurate solar energy forecasting is paramount as the global push towards renewable energy intensifies. We aimed to provide a comprehensive analysis of the latest advancements in solar energy forecasting, focusing on Machine Learning (ML) and Deep Learning (DL) techniques. The novelty of this review lies in its detailed examination of ML and DL models, highlighting their ability to handle complex and nonlinear patterns in Solar Irradiance (SI) data. We systematically explored the evolution from traditional empirical, including machine learning (ML), and physical approaches to these advanced models, and delved into their real-world applications, discussing economic and policy implications. Additionally, we covered a variety of forecasting models, including empirical, image-based, statistical, ML, DL, foundation, and hybrid models. Our analysis revealed that ML and DL models significantly enhance forecasting accuracy, operational efficiency, and grid reliability, contributing to economic benefits and supporting sustainable energy policies. By addressing challenges related to data quality and model interpretability, this review underscores the importance of continuous innovation in solar forecasting techniques to fully realize their potential. The findings suggest that integrating these advanced models with traditional approaches offers the most promising path forward for improving solar energy forecasting.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3