Abstract
High precision short-term photovoltaic (PV) power prediction can reduce the damage associated with large-scale photovoltaic grid-connection to the power system. In this paper, a combination deep learning forecasting method based on variational mode decomposition (VMD), a fast correlation-based filter (FCBF) and bidirectional long short-term memory (BiLSTM) network is developed to minimize PV power forecasting error. In this model, VMD is used to extract the trend feature of PV power, then FCBF is adopted to select the optimal input-set to reduce the forecasting error caused by the redundant feature. Finally, the input-set is put into the BiLSTM network for training and testing. The performance of this model is tested by a case study using the public data-set provided by a PV station in Australia. Comparisons with common short-term PV power forecasting models are also presented. The results show that under the processing of trend feature extraction and feature selection, the proposed methodology provides a more stable and accurate forecasting effect than other forecasting models.
Funder
Planning Project of Guangdong Power Grid Co
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献