An Ultra-Short-Term PV Power Forecasting Method for Changeable Weather Based on Clustering and Signal Decomposition

Author:

Zhang Jiaan12,Hao Yan12,Fan Ruiqing3,Wang Zhenzhen3

Affiliation:

1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China

2. School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China

3. State Grid Tianjin Wuqing Electric Power Supply Company, Tianjin 301700, China

Abstract

Photovoltaic (PV) power shows different fluctuation characteristics under different weather types as well as strong randomness and uncertainty in changeable weather such as sunny to cloudy, cloudy to rain, and so on, resulting in low forecasting accuracy. For the changeable type of weather, an ultra-short-term photovoltaic power forecasting method is proposed based on affinity propagation (AP) clustering, complete ensemble empirical mode decomposition with an adaptive noise algorithm (CEEMDAN), and bi-directional long and short-term memory network (BiLSTM). First, the PV power output curve of the standard clear-sky day was extracted monthly from the historical data, and the photovoltaic power was normalized according to it. Second, the changeable days were extracted from various weather types based on the AP clustering algorithm and the Euclidean distance by considering the mean and variance of the clear-sky power coefficient (CSPC). Third, the CEEMDAN algorithm was further used to decompose the data of changeable days to reduce its overall non-stationarity, and each component was forecasted based on the BiLSTM network, so as to obtain the PV forecasting value in changeable weather. Using the PV dataset obtained from Alice Springs, Australia, the presented method was verified by comparative experiments with the BP, BiLSTM, and CEEMDAN-BiLSTM models, and the MAPE of the proposed method was 2.771%, which was better than the other methods.

Funder

State Grid Tianjin Electric Power Company science and technology project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3