Research on Real-Time Prediction Method of Photovoltaic Power Time Series Utilizing Improved Grey Wolf Optimization and Long Short-Term Memory Neural Network

Author:

Lu Xinyi1,Guan Yan1,Liu Junyu1,Yang Wenye1,Sun Jiayin1,Dai Jing1

Affiliation:

1. Electricity Intensive Control Department State Grid Liaoning Marketing Service Center, Shenyang 110000, China

Abstract

This paper proposes a novel method for the real-time prediction of photovoltaic (PV) power output by integrating phase space reconstruction (PSR), improved grey wolf optimization (GWO), and long short-term memory (LSTM) neural networks. The proposed method consists of three main steps. First, historical data are denoised and features are extracted using singular spectrum analysis (SSA) and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Second, improved grey wolf optimization (GWO) is employed to optimize the key parameters of phase space reconstruction (PSR) and long short-term memory (LSTM) neural networks. Third, real-time predictions are made using LSTM neural networks, with dynamic updates of training data and model parameters. Experimental results demonstrate that the proposed method has significant advantages in both prediction accuracy and speed. Specifically, the proposed method achieves a mean absolute percentage error (MAPE) of 3.45%, significantly outperforming traditional machine learning models and other neural network-based approaches. Compared with seven alternative methods, our method improves prediction accuracy by 15% to 25% and computational speed by 20% to 30%. Additionally, the proposed method exhibits excellent prediction stability and adaptability, effectively handling the nonlinear and chaotic characteristics of PV power.

Funder

State Grid science and technology project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3