Affiliation:
1. College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
2. School of Mechanical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
Abstract
To enhance the stability of photovoltaic power grid integration and improve power prediction accuracy, a photovoltaic power prediction method based on an improved snow ablation optimization algorithm (Good Point and Vibration Snow Ablation Optimizer, GVSAO) and Bi-directional Long Short-Term Memory (Bi-LSTM) network is proposed. Weather data is divided into three typical categories using K-means clustering, and data normalization is performed using the minmax method. The key structural parameters of Bi-LSTM, such as the feature dimension at each time step and the number of hidden units in each LSTM layer, are optimized based on the Good Point and Vibration strategy. A prediction model is constructed based on GVSAO-Bi-LSTM, and typical test functions are selected to analyze and evaluate the improved model. The research results show that the average absolute percentage error of the GVSAO-Bi-LSTM prediction model under sunny, cloudy, and rainy weather conditions are 4.75%, 5.41%, and 14.37%, respectively. Compared with other methods, the prediction results of this model are more accurate, verifying its effectiveness.
Funder
Key R&D Program of Zhejiang
Ministry of Water Resources of the People’s Republic of China