Abstract
To verify the reliability of a typical Pb-free circuit board applied for space exploration, five circuits were put into low temperature and shock test. However, after the test, memories on all five circuits were out of function. To investigate the cause of the failure, a series of methods for failure analysis was carried out, including X-ray detection, cross-section analysis, Scanning Electron Microscope (SEM) analysis, and contrast test. Through failure analysis, the failure was located in the Pb-free (Sn-3.0Ag-0.5Cu) solder joint, and we confirmed that the failure occurred because of the low temperature and change of fracture characteristic of Sn-3.0Ag-0.5Cu (SAC305). A verification test was conducted to verify the failure mechanism. Through analyzing data and fracture surface morphology, the cause of failure was ascertained. At low temperature, the fracture characteristic of SAC305 changed from ductileness to brittleness. The crack occurred at solder joints because of stress loaded by shock test. When the crack reached a specific length, the failure occurred. The temperature of the material’s characteristic change was −70–−80 °C. It could be a reference for Pb-free circuit board use in a space environment.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献