Author:
Plevachuk Yuriy,Švec Peter,Švec Peter,Orovcik Lubomir,Bajana Otto,Yakymovych Andriy,Rud Alexander
Abstract
AbstractAn influence of carbon nanotubes and carbon nanospheres coated by Au–Pd and Pt on the microstructure of solder/copper joints at room temperature and after aging at sub-zero temperature. The carbon nanosized admixtures were mixed with ternary Sn3.0Ag0.5Cu matrix to prepare a composite solder. The microstructure of the solder joints between the nanocomposite solders and a copper substrate was studied by scanning electron microscopy. It was found that minor (0.05 wt. %) admixtures of both the carbon nanospheres and nanotubes increase the shear strength of the solder joints and reduce the growth rate of the intermetallic Cu6Sn5 layer, formed at the interface between solder and copper. This effect may be related to the adsorption of nanoinclusions on the grain surface during the solidification process. Comparative analysis suggests that exposure for 2 months at 253 K does not lead to deterioration of such an important mechanical characteristic of the solder joint as shear strength, indicating the possibility of using these nanocomposite solders in microelectronic equipment even at temperatures below 0 ℃.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Cell Biology,Physical and Theoretical Chemistry,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献