Abstract
Stereo matching has been under development for decades and is an important process for many applications. Difficulties in stereo matching include textureless regions, occlusion, illumination variation, the fattening effect, and discontinuity. These challenges are effectively solved in recently developed stereo matching algorithms. A new imperfect rectification problem has recently been encountered in stereo matching, and the problem results from the high resolution of stereo images. State-of-the-art stereo matching algorithms fail to exactly reconstruct the depth information using stereo images with imperfect rectification, as the imperfectly rectified image problems are not explicitly taken into account. In this paper, we solve the imperfect rectification problems, and propose matching stereo matching methods that based on absolute differences, square differences, normalized cross correlation, zero-mean normalized cross correlation, and rank and census transforms. Finally, we conduct experiments to evaluate these stereo matching methods using the Middlebury datasets. The experimental results show the proposed stereo matching methods can reduce error rate significantly for stereo images with imperfect rectification.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference36 articles.
1. Introductory Techniques For 3-D Computer Vision;Trucco,1998
2. Introduction to 3D Computer Vision Techniques and Algorithms;Cyganek,2009
3. Outdoor stereo camera system for the generation of real-world benchmark data sets
4. Distinctive Image Features from Scale-Invariant Keypoints
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献