Generalized Stereo Matching Method Based on Iterative Optimization of Hierarchical Graph Structure Consistency Cost for Urban 3D Reconstruction

Author:

Yang Shuting1,Chen Hao1,Chen Wen1

Affiliation:

1. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150006, China

Abstract

Generalized stereo matching faces the radiation difference and small ground feature difference brought by different satellites and different time phases, while the texture-less and disparity discontinuity phenomenon seriously affects the correspondence between matching points. To address the above problems, a novel generalized stereo matching method based on the iterative optimization of hierarchical graph structure consistency cost is proposed for urban 3D scene reconstruction. First, the self-similarity of images is used to construct k-nearest neighbor graphs. The left-view and right-view graph structures are mapped to the same neighborhood, and the graph structure consistency (GSC) cost is proposed to evaluate the similarity of the graph structures. Then, cross-scale cost aggregation is used to adaptively weight and combine multi-scale GSC costs. Next, object-based iterative optimization is proposed to optimize outliers in pixel-wise matching and mismatches in disparity discontinuity regions. The visibility term and the disparity discontinuity term are iterated to continuously detect occlusions and optimize the boundary disparity. Finally, fractal net evolution is used to optimize the disparity map. This paper verifies the effectiveness of the proposed method on a public US3D dataset and a self-made dataset, and compares it with state-of-the-art stereo matching methods.

Funder

Natural Science Foundation of Heilongjiang Province

National Key Laboratory of Science and Technology on Remote Sensing Information and Image Analysis Foundation Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3-D Model Extraction Network Based on RFM-Constrained Deformation Inference and Self-Similar Convolution for Satellite Stereo Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3