Façade Protrusion Recognition and Operation-Effect Inspection Methods Based on Binocular Vision for Wall-Climbing Robots

Author:

Zhong Ming1ORCID,Ma Ye1ORCID,Li Zhan1,He Jiajian2,Liu Yaxin1ORCID

Affiliation:

1. Robotics Institute, Harbin Institute of Technology, Weihai 264200, China

2. Jiangsu Automation Research Institute, Lianyungang 222061, China

Abstract

The cleaning and maintenance of large-scale façades is a high-risk industry. Although existing wall-climbing robots can replace humans who work on façade surfaces, it is difficult for them to operate on façade protrusions due to a lack of perception of the surrounding environment. To address this problem, this paper proposes a binocular vision-based method to assist wall-climbing robots in performing autonomous rust removal and painting. The method recognizes façade protrusions through binocular vision, compares the recognition results with an established dimension database to obtain accurate information on the protrusions and then obtains parameters from the process database to guide the operation. Finally, the robot inspects the operation results and dynamically adjusts the process parameters according to the finished results, realizing closed-loop feedback for intelligent operation. The experimental results show that the You Only Look Once version 5 (YOLOv5) recognition algorithm achieves a 99.63% accuracy for façade protrusion recognition and a 93.33% accuracy for the detection of the rust removal effect using the histogram comparison method. The absolute error of the canny edge detection algorithm is less than 3 mm and the average relative error is less than 2%. This paper establishes a vision-based façade operation process with good inspection effect, which provides an effective vision solution for the automation operation of wall-climbing robots on the façade.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3