HFNet-SLAM: An Accurate and Real-Time Monocular SLAM System with Deep Features

Author:

Liu Liming1,Aitken Jonathan M.1ORCID

Affiliation:

1. Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield S10 2TN, UK

Abstract

Image tracking and retrieval strategies are of vital importance in visual Simultaneous Localization and Mapping (SLAM) systems. For most state-of-the-art systems, hand-crafted features and bag-of-words (BoW) algorithms are the common solutions. Recent research reports the vulnerability of these traditional algorithms in complex environments. To replace these methods, this work proposes HFNet-SLAM, an accurate and real-time monocular SLAM system built on the ORB-SLAM3 framework incorporated with deep convolutional neural networks (CNNs). This work provides a pipeline of feature extraction, keypoint matching, and loop detection fully based on features from CNNs. The performance of this system has been validated on public datasets against other state-of-the-art algorithms. The results reveal that the HFNet-SLAM achieves the lowest errors among systems available in the literature. Notably, the HFNet-SLAM obtains an average accuracy of 2.8 cm in EuRoC dataset in pure visual configuration. Besides, it doubles the accuracy in medium and large environments in TUM-VI dataset compared with ORB-SLAM3. Furthermore, with the optimisation of TensorRT technology, the entire system can run in real-time at 50 FPS.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3