Application of Event Cameras and Neuromorphic Computing to VSLAM: A Survey

Author:

Tenzin Sangay1ORCID,Rassau Alexander1ORCID,Chai Douglas1ORCID

Affiliation:

1. School of Engineering, Edith Cowan University, Perth, WA 6027, Australia

Abstract

Simultaneous Localization and Mapping (SLAM) is a crucial function for most autonomous systems, allowing them to both navigate through and create maps of unfamiliar surroundings. Traditional Visual SLAM, also commonly known as VSLAM, relies on frame-based cameras and structured processing pipelines, which face challenges in dynamic or low-light environments. However, recent advancements in event camera technology and neuromorphic processing offer promising opportunities to overcome these limitations. Event cameras inspired by biological vision systems capture the scenes asynchronously, consuming minimal power but with higher temporal resolution. Neuromorphic processors, which are designed to mimic the parallel processing capabilities of the human brain, offer efficient computation for real-time data processing of event-based data streams. This paper provides a comprehensive overview of recent research efforts in integrating event cameras and neuromorphic processors into VSLAM systems. It discusses the principles behind event cameras and neuromorphic processors, highlighting their advantages over traditional sensing and processing methods. Furthermore, an in-depth survey was conducted on state-of-the-art approaches in event-based SLAM, including feature extraction, motion estimation, and map reconstruction techniques. Additionally, the integration of event cameras with neuromorphic processors, focusing on their synergistic benefits in terms of energy efficiency, robustness, and real-time performance, was explored. The paper also discusses the challenges and open research questions in this emerging field, such as sensor calibration, data fusion, and algorithmic development. Finally, the potential applications and future directions for event-based SLAM systems are outlined, ranging from robotics and autonomous vehicles to augmented reality.

Funder

ECU, School of Engineering Scholarship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3