VID-SLAM: Robust Pose Estimation with RGBD-Inertial Input for Indoor Robotic Localization

Author:

Shan Dan12ORCID,Su Jinhe3ORCID,Wang Xiaofeng1,Liu Yujun3,Zhou Taojian3,Wu Zebiao3

Affiliation:

1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. School of Electrical and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China

3. Computer Engineering College, Jimei University, Xiamen 360121, China

Abstract

This study proposes a tightly coupled multi-sensor Simultaneous Localization and Mapping (SLAM) framework that integrates RGB-D and inertial measurements to achieve highly accurate 6 degree of freedom (6DOF) metric localization in a variety of environments. Through the consideration of geometric consistency, inertial measurement unit constraints, and visual re-projection errors, we present visual-inertial-depth odometry (called VIDO), an efficient state estimation back-end, to minimise the cascading losses of all factors. Existing visual-inertial odometers rely on visual feature-based constraints to eliminate the translational displacement and angular drift produced by Inertial Measurement Unit (IMU) noise. To mitigate these constraints, we introduce the iterative closest point error of adjacent frames and update the state vectors of observed frames through the minimisation of the estimation errors of all sensors. Moreover, the closed-loop module allows for further optimization of the global attitude map to correct the long-term drift. For experiments, we collect an RGBD-inertial data set for a comprehensive evaluation of VID-SLAM. The data set contains RGB-D image pairs, IMU measurements, and two types of ground truth data. The experimental results show that VID-SLAM achieves state-of-the-art positioning accuracy and outperforms mainstream vSLAM solutions, including ElasticFusion, ORB-SLAM2, and VINS-Mono.

Funder

National Natural Science Foundation of China

Shenyang Science and Technology Project

Educational Department of Liaoning Provincial Basic Research Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3