5.5 MeV Electron Irradiation-Induced Transformation of Minority Carrier Traps in p-Type Si and Si1−xGex Alloys

Author:

Pavlov Jevgenij,Ceponis Tomas,Pukas Kornelijus,Makarenko Leonid,Gaubas Eugenijus

Abstract

Minority carrier traps play an important role in the performance and radiation hardness of the radiation detectors operating in a harsh environment of particle accelerators, such as the up-graded sensors of the high-luminosity hadron collider (HL-HC) at CERN. It is anticipated that the sensors of the upgraded strip tracker will be based on the p-type silicon doped with boron. In this work, minority carrier traps in p-type silicon (Si) and silicon–germanium (Si1−xGex) alloys induced by 5.5 MeV electron irradiation were investigated by combining various modes of deep-level transient spectroscopy (DLTS) and pulsed technique of barrier evaluation using linearly increasing voltage (BELIV). These investigations were addressed to reveal the dominant radiation defects, the dopant activity transforms under local strain, as well as reactions with interstitial impurities and mechanisms of acceptor removal in p-type silicon (Si) and silicon–germanium (SiGe) alloys, in order to ground technological ways for radiation hardening of the advanced particle detectors. The prevailing defects of interstitial boron–oxygen (BiOi) and the vacancy–oxygen (VO) complexes, as well as the vacancy clusters, were identified using the values of activation energy reported in the literature. The activation energy shift of the radiation-induced traps with content of Ge was clarified in all the examined types of Si1−xGex (with x= 0–0.05) materials.

Funder

Lithuanian Council of Science

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3