A Portable Tunable Diode Laser Absorption Spectroscopy System for Dissolved CO2 Detection Using a High-Efficiency Headspace Equilibrator

Author:

Zhang ZhihaoORCID,Li Meng,Guo Jinjia,Du Baolu,Zheng Ronger

Abstract

Continuous observation of aquatic pCO2  at the ocean surface, with a sensitive response time and high spatiotemporal resolution, is essential for research into the carbon biogeochemical cycle. In this work, a portable tunable diode laser absorption spectroscopy (TDLAS) system for dissolved CO2 detection in surface seawater, coupled with a home-made headspace equilibrator, allowing real time underway measurements, is described. Both the optical detection part and sample extraction part were integrated together into a compact chamber. An empirical equation suitable for this system was acquired, which can convert the concentration from the gas-phase to the aqueous-phase. A monitoring precision of 0.5% was obtained with time-series measurement, and the detection limits of 2.3 ppmv and 0.1 ppmv were determined with 1 s and 128 s averaging time, respectively. Sampling device used in this work was ameliorated so that the response time of system reduced by about 50% compared to the traditional ‘shower head’ system. The fast response time reached the order of 41 s when the final concentration span was 3079 ppmv. For1902 ppmv, this figure was as short as 20 s. Finally, a field underway measurement campaign was carried out and the results were briefly analyzed. Our work proved the feasibility of the TDLAS system for dissolved CO2 rapid detection.

Funder

National Natural Science Foundation of China

Provincial Key Research and Development Program of Shandong, China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3