Volatile Organic Compounds (VOCs) in Soil: Transport Mechanisms, Monitoring, and Removal by Biochar-Modified Capping Layer

Author:

Wang Shifang12,Song Lei2,He Haijie13,Zhang Wenjie1

Affiliation:

1. College of Civil and Architectural Engineering, Taizhou University, Taizhou 318000, China

2. State Key Laboratory for Geomechanics & Deep Underground Engineering, School of Mechanics & Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

Abstract

Volatile organic compounds (VOCs), as a primary pollutant in industrial-contaminated sites or polluted soils, cause severe damage to the soil. Therefore, a comprehensive understanding of the transport of VOCs in soil is imperative to develop effective detection means and removal methods. Among them, biochar possesses potential advantages in the adsorption of VOCs, serving as an effective method for removing VOCs from soil. This review provides an overview of the VOCs within soil, their transport mechanisms, monitoring technology, and removal approach. Firstly, the historical development of the VOC migration mechanism within the capping layer is described in detail. Secondly, the in situ monitoring techniques for VOCs are systematically summarized. Subsequently, one of the effective removal technologies, a capping layer for polluted sites, is simply introduced. Following this, the potential application of a biochar-modified capping layer for the removal of VOCs is comprehensively discussed. Finally, the major challenges in the field and present prospects are outlined. The objective of this study is to furnish researchers with a foundational understanding of VOCs, their relevant information, and their removal approach, inspiring environmental protection and soil pollution control.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

Natural Science Foundation of Zhejiang Province

Science and technology project of the Ministry of Housing and Urban-Rural Development

Taizhou science and technology project

Science and technology project of Department of housing and urban–rural development of Zhejiang Province

Publisher

MDPI AG

Reference100 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3