Portable TDLAS Sensor for Online Monitoring of CO2 and H2O Using a Miniaturized Multi-Pass Cell

Author:

Gu Mingsi12,Chen Jiajin1,Zhang Yiping3,Tan Tu1,Wang Guishi1,Liu Kun1ORCID,Gao Xiaoming12,Mei Jiaoxu1

Affiliation:

1. Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China

3. Anhui Advanced Spectroscopy Optical-Electric S&T Co., Ltd., Hefei 230026, China

Abstract

We designed a tunable diode laser absorption spectroscopy (TDLAS) sensor for the online monitoring of CO2 and H2O concentrations. It comprised a small self-design multi-pass cell, home-made laser drive circuits, and a data acquisition circuit. The optical and electrical parts and the gas circuit were integrated into a portable carrying case (height = 134 mm, length = 388 mm, and width = 290 mm). A TDLAS drive module (size: 90 mm × 45 mm) was designed to realize the function of laser current and temperature control with a temperature control accuracy of ±1.4 mK and a current control accuracy of ±0.5 μA, and signal acquisition and demodulation. The weight and power consumption of the TDLAS system were only 5 kg and 10 W, respectively. Distributed feedback lasers (2004 nm and 1392 nm) were employed to target CO2 and H2O absorption lines, respectively. According to Allan analysis, the detection limits of CO2 and H2O were 0.13 ppm and 3.7 ppm at an average time of 18 s and 35 s, respectively. The system response time was approximately 10 s. Sensor performance was verified by measuring atmospheric CO2 and H2O concentrations for 240 h. Experimental results were compared with those obtained using a commercial instrument LI-7500, which uses non-dispersive infrared technology. Measurements of the developed gas analyzer were in good agreement with those of the commercial instrument, and its accuracy was comparable. Therefore, the TDLAS sensor has strong application prospects in atmospheric CO2 and H2O concentration detection and ecological soil flux monitoring.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3