Polarization Switching Kinetics in Thin Ferroelectric HZO Films

Author:

Kondratyuk Ekaterina,Chouprik AnastasiaORCID

Abstract

Ferroelectric polycrystalline HfO2 thin films are the most promising material for the implementation of novel non-volatile ferroelectric memories because of their attractive properties, such as compatibility with modern Si technology, perfect scalability, low power consumption and high endurance. However, for the commercialization of ferroelectric memory, some crucial aspects of its operation should be addressed, including the polarization switching mechanism that determines the switching speed. Although several reports on polarization switching kinetics in HfO2-based layers already exist, the physical origin of retardation behavior of polarization switching at the low and medium switching fields remains unclear. In this work, we examine several models of switching kinetics that can potentially explain or describe retardation behavior observed in experimental switching kinetics for Hf0.5Zr0.5O2 (HZO)-based capacitors and propose a new model. The proposed model is based on a statistical model of switching kinetics, which has been significantly extended to take into account the specific properties of HZO. The model includes contributions of the depolarization field and the built-in internal field originating from the charge injection into the functional HZO layer during the read procedure as well as in-plane inhomogeneity of the total electric field in ferroelectric. The general model of switching kinetics shows excellent agreement with the experimental results.

Funder

Russian Science Foundation

Russian Foundation for Advanced Research Projects

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3