Recent Advances in DNA Methylation and Their Potential Breeding Applications in Plants

Author:

Shaikh Aamir Ali,Chachar SadaruddinORCID,Chachar Muzafaruddin,Ahmed NazirORCID,Guan ChangfeiORCID,Zhang PingxianORCID

Abstract

Traditional plant breeding encompasses repetitive crossing and selection based on morphological traits, while phenotypic selection has been complemented by molecular methods in recent decades. Genome editing with techniques like the CRISPR-Cas9 system is still a novel approach that is being used to make direct modifications to nucleotide sequences of crops. In addition to these genetic alterations, an improved understanding of epigenetic variations such as DNA methylation on the phenotype of plants has led to increased opportunities to accelerate crop improvement. DNA methylation is the most widely studied epigenetic mark in plants and other eukaryotes. These epigenetic marks are highly conserved and involved in altering the activities and functions of developmental signals by catalyzing changes in the chromatin structure through methylation and demethylation. Cytosine methylation (5mC) is the most prevalent modification found in DNA. However, recent identification of N6-methyladenosine (6mA) in plants starts to reveal their critical role in plant development. Epigenetic modifications are actively involved in creating the phenotype by controlling essential biological mechanisms. Epigenetic modifications could be heritable and metastable causing variation in epigenetic status between or within species. However, both genetic and heritable epigenetic variation has the potential to drive natural variation. Hence, epigenome editing might help overcome some of the shortcomings of genome editing (such as gene knockout), which can have significant off-target effects and only enables the loss of a gene’s function. In this review, we have discussed the mechanism underlying DNA methylation and demethylation in plants. Methyltransferases and demethylases are involved in catalyzing specific types of modification. We also discuss the potential role of DNA modifications in crop improvement for meeting the requirements of sustainable and green agriculture.

Funder

the Baichuan Project at the College of Life Science and Technology, Huazhong Agricultural University

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3