Systems biology of chromium-plant interaction: insights from omics approaches

Author:

Abdullah ,Wani Kaiser Iqbal,Naeem M.,Jha Prakash Kumar,Jha Uday Chand,Aftab Tariq,Prasad P. V. Vara

Abstract

Plants are frequently subjected to heavy metal (HM) stress that impedes their growth and productivity. One of the most common harmful trace metals and HM discovered is chromium (Cr). Its contamination continues to increase in the environment due to industrial or anthropogenic activities. Chromium is severely toxic to plant growth and development and acts as a human carcinogen that enters the body by inhaling or taking Cr-contaminated food items. Plants uptake Cr via various transporters, such as sulfate and phosphate transporters. In nature, Cr is found in various valence states, commonly Cr (III) and Cr (VI). Cr (VI) is soil’s most hazardous and pervasive form. Cr elevates reactive oxygen species (ROS) activity, impeding various physiological and metabolic pathways. Plants have evolved various complex defense mechanisms to prevent or tolerate the toxic effects of Cr. These defense mechanisms include absorbing and accumulating Cr in cell organelles such as vacuoles, immobilizing them by forming complexes with organic chelates, and extracting them by using a variety of transporters and ion channels regulated by various signaling cascades and transcription factors. Several defense-related proteins including, metallothioneins, phytochelatins, and glutathione-S-transferases aid in the sequestration of Cr. Moreover, several genes and transcriptional factors, such as WRKY and AP2/ERF TF genes, play a crucial role in defense against Cr stress. To counter HM-mediated stress stimuli, OMICS approaches, including genomics, proteomics, transcriptomics, and metallomics, have facilitated our understanding to improve Cr stress tolerance in plants. This review discusses the Cr uptake, translocation, and accumulation in plants. Furthermore, it provides a model to unravel the complexities of the Cr-plant interaction utilizing system biology and integrated OMICS approach.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3