A Preliminary Study for Identifying Genes Associated with Pellicle Development in Xinjiang Walnut (Juglans regia L.)

Author:

Jin QiangORCID,Gao Shan,Mo Rongli,Sheng Fang,Zhang Qinglin,Wu Cuiyun,Zhang Rui,Luo ZhengrongORCID

Abstract

Walnut (Juglans regia L.) is an important nut fruit crop mainly grown for its high nutritional and medicinal value. In walnut fruit, the pellicle is the main source of polyphenols (such as proanthocyanidins), which are natural bioactive compounds but also cause astringency and bitterness for walnut fruit consumption. However, the gene regulatory networks of phenolic biosynthetic pathways remain largely unknown in walnut pellicles. Here, we performed RNA sequencing (RNA-seq) to identify differentially expressed genes (DEGs) associated with pellicle development in walnut. In this study, seven developmental stages (8-, 9-, 11-, 13-, 15-, 17-, and 19-week after pollination) of ‘Xinwen179’ pellicle tissues were harvested to conduct further transcriptome-wide profiles. Via RNA-seq, we explored several key DEGs involved in the phenolic biosynthetic pathway, such as dihydroflavonol-4-reductase (DFR), leucoanthocyanidin reductase (LAR), anthocyanidin synthase (ANS) and anthocyanidin reductase (ANR), which are dynamically expressed at developmental stages of the walnut pellicle. Among them, ANR may directly contribute to proanthocyanidins accumulation during walnut development. Taken together, our preliminary investigation on DEGs associated with pellicle development will not only elucidate the gene regulatory networks of the phenolic biosynthetic pathway for pellicle development, but also contribute to the broad spectrum of RNA-seq data resources for further genetic improvement of walnut.

Funder

National Natural Science Foundation of China

Major Scientific and Technological Projects of XPCC

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3