Genome-Wide Identification and Expression Analysis of AMT Gene Family in Apple (Malus domestica Borkh.)

Author:

Huang Linlin,Li Jiazhen,Zhang Bin,Hao Yanyan,Ma FengwangORCID

Abstract

Ammonium is one of the prevalent nitrogen sources for growth and development of higher plants. Ammonium acquisition from soil is facilitated by ammonium transporters (AMTs), which are plasma membrane proteins that exclusively transport ammonium/ammonia. However, the functional characteristics and molecular mechanisms of AMTs in apple remain unclear. In this work, 15 putative AMT genes were identified and classified into four clusters (AMT1–AMT4) in apple. According to expression analysis, these AMTs had varying expressions in roots, leaves, stems, flowers and fruits. Some of them were strongly affected by diurnal cycles. AMT genes showed multiple transcript patterns to N regimes and were quite responsive to osmotic stress. In addition, phosphorylation analysis revealed that there were some conserved phosphorylation residues within the C-terminal of AMT proteins. Furthermore, detailed research was conducted on AMT1;2 functioning by heterologous expression in yeast. The present study is expected to provide basic bioinformatic information and expression profiles for the apple AMT family and to lay a basis for exploring the functional roles and regulation mechanisms of AMTs in apple.

Funder

the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3