Affiliation:
1. Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
2. Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
Abstract
Ammonium transporter 1 (AMT1), a member of ammonia (NH3/NH4+) transport proteins, has been found to have ammonia transport activity in plants and microorganisms. However, the functional characteristics and molecular mechanisms of AMT1 in mollusks remain unclear. The razor clam (Sinonovacula constricta) is a suitable model species to explore the molecular mechanism of ammonia excretion because of the high concentration of ambient ammonia it is exposed to in the clam–fish–shrimp polyculture system. Here, the expression of AMT1 in S. constricta (Sc-AMT1) in response to high ammonia (12.85 mmol/L NH4Cl) stress was identified by real-time quantitative PCR (qRT-PCR), Western blotting, RNA interference, and immunofluorescence analysis. Additionally, the association between the SNP_g.15211125A > T linked with Sc-AMT1 and ammonia tolerance was validated by kompetitive allele-specific PCR (KASP). A significant upregulated expression of Sc-AMT1 was observed during ammonia exposure, and Sc-AMT1 was found to be localized in the flat cells of gill. Moreover, the interference with Sc-AMT1 significantly upregulated the hemolymph ammonia levels, accompanied by the increased mRNA expression of Rhesus glycoprotein (Rh). Taken together, our findings imply that AMT1 may be a primary contributor to ammonia excretion in S. constricta, which is the basis of their ability to inhabit benthic water with high ammonia levels.
Funder
National Natural Science Foundation of China
Key Scientific and Technological Grant of Zhejiang for Breeding New Agricultural Varieties
Ningbo Major Project of Science and Technology
Subject
General Veterinary,Animal Science and Zoology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献