Biological ammonium transporters: evolution and diversification

Author:

Williamson Gordon1,Harris Thomas1,Bizior Adriana1,Hoskisson Paul Alan1,Pritchard Leighton1,Javelle Arnaud1ORCID

Affiliation:

1. Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde Glasgow UK

Abstract

Although ammonium is the preferred nitrogen source for microbes and plants, in animal cells it is a toxic product of nitrogen metabolism that needs to be excreted. Thus, ammonium movement across biological membranes, whether for uptake or excretion, is a fundamental and ubiquitous biological process catalysed by the superfamily of the Amt/Mep/Rh transporters. A remarkable feature of the Amt/Mep/Rh family is that they are ubiquitous and, despite sharing low amino acid sequence identity, are highly structurally conserved. Despite sharing a common structure, these proteins have become involved in a diverse range of physiological process spanning all domains of life, with reports describing their involvement in diverse biological processes being published regularly. In this context, we exhaustively present their range of biological roles across the domains of life and after explore current hypotheses concerning their evolution to help to understand how and why the conserved structure fulfils diverse physiological functions.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3