The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons.

Author:

Lande M B1,Donovan J M1,Zeidel M L1

Affiliation:

1. Childrens Hospital and Harvard Medical School, Boston, Massachusetts 02132, USA.

Abstract

Several barrier epithelia such as renal collecting duct, urinary bladder, and gastric mucosa maintain high osmotic pH and solute gradients between body compartments and the blood by means of apical membranes of exceptionally low permeabilities. Although the mechanisms underlying these low permeabilities have been only poorly defined, low fluidity of the apical membrane has been postulated. The solubility diffusion model predicts that lower membrane fluidity will reduce permeability by reducing the ability of permeant molecules to diffuse through the lipid bilayer. However, little data compare membrane fluidity with permeability properties, and it is unclear whether fluidity determines permeability to all, or only some substances. We therefore studied the permeabilities of a series of artificial large unilamellar vesicles (LUV) of eight different compositions, exhibiting a range of fluidities encountered in biological membranes. Cholesterol and sphingomyelin content and acyl chain saturation were varied to create a range of fluidities. LUV anisotropy was measured as steady state fluorescence polarization of the lipophilic probe DPH. LUV permeabilities were determined by monitoring concentration-dependent or pH-sensitive quenching of entrapped carboxyfluorescein on a stopped-flow fluorimeter. The relation between DPH anisotropy and permeability to water, urea, acetamide, and NH3 was well fit in each instance by single exponential functions (r > 0.96), with lower fluidity corresponding to lower permeability. By contrast, proton permeability correlated only weakly with fluidity. We conclude that membrane fluidity determines permeability to most nonionic substances and that transmembrane proton flux occurs in a manner distinct from flux of other substances.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3