Optimization and Communication in UAV Networks

Author:

Caillouet Christelle,Mitton NathalieORCID

Abstract

Nowadays, Unmanned Aerial Vehicles (UAVs) have received growing popularity in the Internet-of-Things (IoT) which often deploys many sensors in a relatively wide region. Current trends focus on deployment of a single UAV or a swarm of it to generally map an area, perform surveillance, monitoring or rescue operations, collect data from ground sensors or various communicating devices, provide additional computing services close to data producers, etc. Applications are very diverse and call for different features or requirements. But UAV remain low-power battery powered devices that in addition to their mission, must fly and communicate. Thanks to wireless communications, they participate to mobile dynamic networks composed of UAV and ground sensors and thus many challenges have to be addressed to make UAV very efficient. And behind any UAV application, hides an optimization problem. There is still a criterion or multiple ones to optimize such as flying time, energy consumption, number of UAV, quantity of data to send/receive, etc.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A green smart station design for a UAV fleet management in precision agriculture;Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IX;2024-06-07

2. UAV obstacle avoidance with PID control based on improved sparrow search algorithm;Fourth International Conference on Signal Processing and Machine Learning (CONF-SPML 2024);2024-04-01

3. Integrating unmanned and manned UAVs data network based on combined Bayesian belief network and multi-objective reinforcement learning algorithm;Drone Systems and Applications;2023-01-01

4. Design and Performance Issues in UAV Cellular Communications;Unmanned Aerial Vehicle Cellular Communications;2022-10-12

5. Adaptive Leader-Following Consensus Tracking Control of Multiple UAVs Subject to Deception Attacks;Processes;2022-04-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3