Trajectory Planning for Data Collection of Energy-Constrained Heterogeneous UAVs

Author:

Qin ZhenORCID,Dong Chao,Wang Hai,Li Aijing,Dai Haipeng,Sun Weihao Sun,Xu

Abstract

Nowadays, Unmanned Aerial Vehicles (UAVs) have received growing popularity in the Internet-of-Things (IoT) which often deploys many sensors in a relatively wide region. Since the battery capacity is limited, sensors cannot transmit over a long distance. It is necessary for designing efficient sensor data collection mechanisms to prolong the lifetime of the IoT and enhance data collection efficiency. In this paper, we consider a UAV-enabled data collection scenario, where multiple heterogeneous UAVs with different energy constraints are employed to collect data from sensors. The value of data depends on the importance of the monitoring area of the sensor and the freshness of collected data. Our objective is to maximize the data collection utility by jointly optimizing the communication scheduling and trajectory of each UAV. The data collection utility is determined by the amount and value of the collected data. This problem is a variant of multiple knapsack problem, which is a classical NP-hard problem. First, we transform the initial problem into a submodular function maximization problem under energy constraints, and then we design a novel trajectory planning algorithm to maximize the data collection utility, while accounting for different values of data and different energy constraints of heterogeneous UAVs. Finally, under different network settings, the performance of the proposed trajectory planning algorithm is evaluated via extensive simulations. The results show that the proposed algorithm can obtain maximum data collection utility.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3