Completion Time Minimization for Multi-UAV Information Collection via Trajectory Planning

Author:

Qin ZhenORCID,Li Aijing,Dong Chao,Dai Haipeng,Xu Zhengqin

Abstract

Unmanned Aerial Vehicles (UAVs) are widely used as mobile information collectors for sensors to prolong the network time in Wireless Sensor Networks (WSNs) due to their flexible deployment, high mobility, and low cost. This paper focuses on the scenario where rotary-wing UAVs complete information collection mission cooperatively. For the first time, we study the problem of minimizing the mission completion time for a multi-UAV system in a monitoring scenario when considering the information collection quality. The mission completion time includes flying time and hovering time. By optimizing the trajectories of all UAVs, we minimize the mission completion time while ensuring that the information of each sensor is collected. This problem can be formulated as a mixed-integer non-convex one which has been proved to be NP-hard. To solve the formulated problem, we first propose a hovering point selection algorithm to select appropriate hovering points where the UAVs can sequentially collect the information from multiple sensors. We model this problem as a BS coverage problem with the information collection quality in consideration. Then, we use a min-max cycle cover algorithm to assign these hovering points and get the trajectory of each UAV. Finally, with the obtained UAVs trajectories, we further consider the UAVs can also collect information when flying and optimize the time allocations. The performance of our algorithm is verified by simulations, which show that the mission completion time is minimum compared with state-of-the-art algorithms.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3