Integrating unmanned and manned UAVs data network based on combined Bayesian belief network and multi-objective reinforcement learning algorithm

Author:

Millar Richard C.1,Hashemi Leila2,Mahmoodi Armin2,Meyer Robert Walter3,Laliberte Jeremy2ORCID

Affiliation:

1. The George Washington University, Engineering Management & Systems Engineering, WA, DC, USA

2. Carleton University, Mechanical & Aerospace Engineering, Ottawa, ON, Canada

3. State University of New York, Chemical Engineering, Syracuse, NY, USA

Abstract

This paper presents and assesses the feasibility and potential of a novel concept: the operation of multiple Unmanned Aerial Vehicles (UAVs) commanded and supported by a manned “Tender” air vehicle carrying a pilot and flight manager(s). The “Tender” is equipped to flexibly and economically monitor and manage multiple diverse UAVs over otherwise inaccessible terrain through wireless communication. The proposed architecture enables operations and analysis supported by the means to detect, assess, and accommodate change and hazards on the spot with effective human observation and coordination. Further, this paper seeks to find the optimal trajectories for UAVs to collect data from sensors in a predefined continuous space. We formulate the path-planning problem for a cooperative, and a diverse swarm of UAVs tasked with optimizing multiple objectives simultaneously with the goal of maximizing accumulated data within a given flight time within cloud data processing constraints as well as minimizing the probable imposed risk during UAVs mission. The risk assessment model determines risk indicators using an integrated Specific Operation Risk Assessment—Bayesian belief network approach, while its resultant analysis is weighted through the analytic hierarchy process ranking model. To this end, as the problem is formulated as a convex optimization model, and we propose a low complexity multi-objective reinforcement learning (MORL) algorithm with a provable performance guarantee to solve the problem efficiently. We show that the MORL architecture can be successfully trained and allows each UAV to map each observation of the network state to an action to make optimal movement decisions. This proposed network architecture enables the UAVs to balance multiple objectives. Estimated MSE measures show that the algorithm produced decreasing errors in the learning process with increasing epoch number.

Publisher

Canadian Science Publishing

Subject

Control and Optimization,Electrical and Electronic Engineering,Control and Systems Engineering,Automotive Engineering,Aerospace Engineering,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3